Column Buckling

mi@seu.edu.cn
Contents

• Stability and Buckling (稳定性与失稳)
• Examples of Columns (压杆应用示例)
• Conventional Design of Columns (压杆的常规设计方法)
• Euler’s Formula for Pin-ended Columns (端部铰接压杆欧拉公式)
• Buckling Modes (失稳模态)
• Extension of Euler’s Formula (欧拉公式的扩展)
• Buckling in Orthogonal Planes (相互垂直平面内的失稳)
• Ways to Improve Column Stability (提高压杆稳定性的途径)
• Applicability of Euler’s Formula (欧拉公式的适用范围)
• Failure Diagram of Columns (压杆的失效总图)
• Critical Stress of Columns (压杆临界应力的确定)
• Design of Columns (压杆的稳定性设计方法)
• Eccentrically Loaded Columns (偏心压杆)
Stability and Buckling

- **Stability** is characterized as the ability of a structure to maintain its (stable) equilibrium under working conditions.

- **Buckling** is the behavior of a structure losing its equilibrium under working conditions. This is another type of failure criterion, in addition to strength (fracture/yielding), stiffness (deformation) and fatigue criteria.

- Buckling occurs suddenly and results in catastrophic accident.
Conventional Design of Columns

• In the design of columns, cross-sectional area is selected such that
 - allowable stress is not exceeded
 \[\sigma = \frac{P}{A} \leq [\sigma] \]
 - deformation falls within specifications
 \[\varepsilon = \frac{\Delta L}{L} = \frac{P}{AE} \leq [\varepsilon] \]

• After these design calculations, many discover that the column is unstable under loading and that it suddenly becomes sharply curved or buckles.
Consider an axially loaded beam. After a small perturbation, the system reaches a neutral equilibrium configuration such that

\[
\frac{d^2 w}{dx^2} + \frac{P_{cr}}{EI} w = 0
\]

\[
\Rightarrow w'' + k^2 w = 0, \quad k^2 = \frac{P_{cr}}{EI}
\]

\[
\Rightarrow w = A \sin kx + B \cos kx
\]

\[
0 = w(0) = w(L)
\]

\[
B = 0;
\]

\[
kL = n\pi \Rightarrow P_{cr} = \frac{EIn^2\pi^2}{L^2}
\]
Buckling Modes

\[
P_{cr} = \frac{EI\pi^2}{L^2}; \quad P_{cr} = \frac{4EI\pi^2}{L^2}; \quad P_{cr} = \frac{9EI\pi^2}{L^2}
\]
Cantilevered Columns

- A column with one fixed and one free end, will behave as the upper-half of a pin-connected column.

- The critical loading is calculated from Euler’s formula,

\[
P_{cr} = \frac{\pi^2 EI}{L_e^2} = \frac{\pi^2 EI}{4L^2}
\]

\[
\sigma_{cr} = \frac{\pi^2 E}{(L_e/i_r)^2} = \frac{\pi^2 E}{4(L/i_r)^2}
\]

\[L_e = 2L = \text{equivalent length}\]
Columns with Two Fixed Ends

- The symmetry of the supports and of the loading requires that the shear at C and the horizontal reactions at both ends be zero.
- The equation of the deflection curve involves sine and cosine functions.
- Point D must be a point of inflection, where the bending moment is zero.
- It follows that the portion DE of the column must behave as a pin ended column.

\[
L_e = 0.5L \quad \Rightarrow \quad P_{cr} = \frac{\pi^2 EI}{L_e^2} = \frac{4\pi^2 EI}{L^2}
\]
Columns with One Fixed End and One Free End

- The differential equation

\[
\frac{d^2 w}{dx^2} = -\left(\frac{Pw - Vx}{EI}\right)
\]

\[
\Rightarrow \frac{d^2 w}{dx^2} + \frac{P}{EI} w = \frac{Vx}{EI}
\]

\[
\Rightarrow w = A \sin kx + B \cos kx + \frac{Vx}{P}, \quad k^2 = \frac{P}{EI}
\]

\[
\begin{align*}
0 &= w(0) = w(L) \quad \Rightarrow B = 0; \quad A \sin kL = -\frac{VL}{P} \\
0 &= w'(L) \quad \Rightarrow Ak \cos kL = -\frac{V}{P} \\
\Rightarrow \tan kL &= kL \quad \Rightarrow k^2 = 20.19/L^2 \\
\Rightarrow P_{cr} &= EI k^2 = \frac{20.19EI}{L^2} \approx \frac{\pi^2 EI}{(0.699L)^2}
\end{align*}
\]

- Equivalent length: \(L_e \approx 0.7L \)
Extension of Euler’s Formula

(a) One fixed end, one free end

(b) Both ends pinned

(c) One fixed end, one pinned end

(d) Both ends fixed

\[P_{cr} = \frac{\pi^2 EI}{L_e^2} = \frac{\pi^2 EI}{(\mu L)^2}; \]

\[\sigma_{cr} = \frac{\pi^2 E}{(L_e/i_r)^2} = \frac{\pi^2 E}{(\mu L/i_r)^2} \]

\[L_e = \text{equivalent length}; \quad \mu = \text{length coefficient} \]
Sample Problem

• Assuming the same material and cross-sectional dimension, which of the following four columns is most susceptible to buckling?

\[P_{cr} = \frac{\pi^2 EI}{(\mu l)^2} \quad \text{(Euler Formula)} \]
Sample Problem

- For the truss shown, \(F, \beta, \) and \(L_{AC} \) are given. Find \(0 < \theta < \pi/2 \), under which column \(AB \) and \(BC \) reach critical stability simultaneously.

- Solution:

 1. Euler’s equation for column \(AB \):

 \[
 F_{AB} = F \cos \theta = \frac{\pi^2 EI}{l_{AB}^2} = \frac{\pi^2 EI}{l^2 \cos^2 \beta}
 \]

 2. Euler’s equation for column \(BC \):

 \[
 F_{BC} = F \sin \theta = \frac{\pi^2 EI}{l_{CB}^2} = \frac{\pi^2 EI}{l^2 \sin^2 \beta}
 \]

 3. If column \(AB \) & \(BC \) reach critical stability simultaneously:

 \[
 \left\{ \begin{aligned}
 F \cos \theta &= \frac{\pi^2 EI}{l^2 \cos^2 \beta} \\
 F \sin \theta &= \frac{\pi^2 EI}{l^2 \sin^2 \beta}
 \end{aligned} \right. \quad \Rightarrow \cot \theta = \tan^2 \beta
 \]
Sample Problem

- Which of the following best describes the relationship between critical P_1 and P_2? (a) $P_1 = P_2$; (b) $P_1 < P_2$; (c) $P_1 > P_2$; (d) not sure.

- Solution: (a) $F_{NAD} = \sqrt{2}P_1 = \frac{\pi^2 EI}{(\sqrt{2}a)^2} \implies P_1 = \frac{1}{2\sqrt{2}} \frac{\pi^2 EI}{a^2}$

(b) $F_{NAB} = P_2 = \frac{\pi^2 EI}{a^2} \implies P_2 = \frac{\pi^2 EI}{a^2}$
For the column shown, find the relationship between the critical loads corresponding to cross-sections described by (a), (b) and (c).

Solution:

\[
\begin{align*}
 P_{cr-a} &= \frac{\pi^2 EI_a}{(\mu l)^2} = \frac{\pi^2 E \pi (2r)^4}{64 (\mu l)^2} = \frac{\pi^2 E \pi r^4}{4 (\mu l)^2} \\
 P_{cr-b} &= \frac{\pi^2 EI_b}{(\mu l)^2} = \frac{\pi^2 E \pi r^4}{64 (\mu l)^2} \\
 P_{cr-c} &= \frac{\pi^2 EI_c}{(\mu l)^2} = \frac{\pi^2 E (r \sqrt{\pi})^4}{12 (\mu l)^2} = \frac{\pi^2 E \pi^2 r^4}{12 (\mu l)^2}
\end{align*}
\]

\[
\begin{align*}
 P_{cr-a} : P_{cr-b} : P_{cr-c} &= 1 : 1 : \pi \\
 &= \frac{1}{4} : \frac{1}{64} : \frac{\pi}{12} \\
 &= 1 : \frac{1}{16} : \frac{\pi}{3}
\end{align*}
\]
Buckling in Orthogonal Planes

• For the column shown, find the relationship between the critical loads corresponding to buckling in x-y and x-z plane respectively.

• Solution:

$$P_{cr,z} = \frac{\pi^2 EI_z}{(\mu_z l)^2}$$

$$P_{cr,y} = \frac{\pi^2 EI_y}{(\mu_y l)^2}$$

$$\frac{P_{cr,z}}{P_{cr,y}} = \frac{I_z}{I_y} = \frac{b(2b)^3/12}{2bb^3/12} = 4$$

• What if the cross-section is increased to $2b \times 2b$?
Buckling in Orthogonal Planes

- Buckling in x-z:

$$\mu_y = 1 \quad P_{cr.y} = \frac{\pi^2 EI_y}{L^2}$$

- Buckling in x-y:

$$\mu_z = 0.5 \quad P_{cr.z} = \frac{\pi^2 EI_z}{(0.5L)^2}$$
Ways to Improve Column Stability

• Selection of materials.
• Decrease effective column length (μL).
• Increase moment of inertia for a given cross-sectional area.

\[P_{cr} = \frac{\pi^2 EI}{L_e^2} = \frac{\pi^2 EI}{(\mu L)^2} \]

\[\sigma_{cr} = \frac{\pi^2 E}{(\mu L/i_r)^2} = \frac{\pi^2 E}{\lambda^2} \]

• Coordination of end conditions and moment of inertia in orthogonal planes: $\mu_z/i_{r,z} = \mu_y/i_{r,y}$

• For a group of columns, make each one equally stable (avoid the last straw).
Applicability of Euler’s Formula

• Critical buckling stress

\[
P_{cr} = \frac{\pi^2 EI}{(\mu L)^2} \quad \Rightarrow \quad \sigma_{cr} = \frac{P_{cr}}{A} = \frac{\pi^2 E (A i_r^2)}{(\mu L)^2 A} = \frac{\pi^2 E}{(\mu L / i_r)^2} = \frac{\pi^2 E}{\lambda^2}
\]

\[
\lambda = \mu L / i_r = \text{slenderness ratio}
\]

• Applicability of Euler’s formula

\[
\sigma_{cr} = \frac{\pi^2 E}{\lambda^2} \leq \sigma_p \quad \Rightarrow \quad \lambda \geq \lambda_p = \pi \sqrt{\frac{E}{\sigma_p}} \quad \sigma_p: \text{proportion limit}; \quad \lambda_p: \text{critical slenderness ratio}.
\]

Q235:

\[
\lambda_p = \pi \sqrt{\frac{E}{\sigma_p}} = \pi \sqrt{\frac{206 \text{ GPa}}{200 \text{ MPa}}} = 100
\]

\[
(\sigma_Y = 235 \text{ MPa})
\]
Previous analyses assumed stresses below the proportional limit and initially straight, homogeneous columns.

Experimental data demonstrate:
- For large L_e / i_r, σ_{cr} follows Euler’s formula and depends upon E but not σ_Y.
- For small L_e / i_r, σ_{cr} is determined by the yield strength σ_Y and not E.
- For intermediate L_e / i_r, σ_{cr} depends on both σ_Y and E.

\[\sigma_{cr} = \pi^2 E / \lambda^2 \]

Empirical formulas for intermediate columns
Critical Stress of Columns

1. Long columns: \(\lambda \geq \lambda_P \left(\sigma_{cr} = \frac{\pi^2 E}{\lambda^2} \leq \sigma_p = \frac{\pi^2 E}{\lambda_P^2} \right) \)

2. Intermediate columns:
 \[\lambda_Y = \frac{a - \sigma_Y}{b} < \lambda < \lambda_P \left(\sigma_p < \sigma_{cr} = a - b\lambda < \sigma_Y \right) \]

3. Short columns: \(\lambda < \lambda_Y \left(\sigma_{cr} > \sigma_Y \right) \)
Sample Problem

- For the wood column shown, $E = 10$ GPa, $\sigma_p = 9$ MPa, $\sigma_Y = 13$ MPa, $\sigma_{cr} = 28.7 - 0.19\lambda$ for intermediate columns. Find the critical loads for rectangular cross-sections: (1) $h = 120$ mm, $b = 90$ mm; (2) $h = b = 104$ mm

- Solution:
 \[
 \lambda_p = \sqrt{\frac{\pi^2 E}{\sigma_p}} = 104.7
 \]
 \[
 \lambda_Y = \frac{a - \sigma_Y}{b} = 82.6
 \]

1. $\lambda = \frac{\mu l}{i_r} = 115.4$

 $\therefore \lambda > \lambda_p$ \therefore Slender column.

 \[
 P_{cr} = \frac{\pi^2 EI}{(\mu l)^2} = 79.9$ kN
 \]

2. $\lambda = 100$

 \therefore Intermediate column.

 \[
 P_{cr} = \sigma_{cr}A = (a - b\lambda)A = 104.9$ kN
 \]
Sample Problem

- For the composite beam and column structure shown, $E_{AB} = E_{BD} = E$, $d_{AB} = d_{BD} = d$, $L:d = 30$, $\lambda_{P,BD} = 100$. Find P, under which BD reaches the critical condition.

- Solution:

 $BD : \lambda = \mu L \frac{i}{d/4} = 120 > \lambda_p$

 $F_{cr,BD} = \frac{\pi^2 EI}{L^2}$

- Deformation compatibility:

 $\frac{5PL^3}{6EI} - \frac{8F_{BD}L^3}{3EI} = \frac{F_{BD}L}{EA}$

 $\Rightarrow P = \frac{\pi^3 Ed^2}{18000}$
Design of Columns

1. Method of safety factor

\[F \leq \frac{F_{cr}}{n_{st}} = [F_{st}] \]

\[\sigma = \frac{F}{A} \leq \frac{\sigma_{cr}}{n_{st}} = [\sigma_{st}] \]

\(n_{st} \): safety factor

\([F_{st}]\): allowable load

\([\sigma_{st}]\): allowable stress

2. Method of discount factor

\[[\sigma_{st}] = \varphi [\sigma] \]

\[\sigma = \frac{F}{A} \leq \varphi [\sigma] \]

\(\varphi = \varphi(\lambda) \): discount/stability factor

<table>
<thead>
<tr>
<th>(\lambda)</th>
<th>0.0</th>
<th>1.0</th>
<th>2.0</th>
<th>3.0</th>
<th>4.0</th>
<th>5.0</th>
<th>6.0</th>
<th>7.0</th>
<th>8.0</th>
<th>9.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.999</td>
<td>0.998</td>
<td>0.998</td>
<td>0.998</td>
<td>0.997</td>
<td>0.996</td>
</tr>
<tr>
<td>10</td>
<td>0.995</td>
<td>0.994</td>
<td>0.993</td>
<td>0.992</td>
<td>0.991</td>
<td>0.990</td>
<td>0.989</td>
<td>0.988</td>
<td>0.986</td>
<td>0.985</td>
</tr>
<tr>
<td>20</td>
<td>0.981</td>
<td>0.979</td>
<td>0.977</td>
<td>0.976</td>
<td>0.975</td>
<td>0.974</td>
<td>0.972</td>
<td>0.970</td>
<td>0.968</td>
<td>0.966</td>
</tr>
<tr>
<td>30</td>
<td>0.965</td>
<td>0.961</td>
<td>0.959</td>
<td>0.957</td>
<td>0.955</td>
<td>0.953</td>
<td>0.952</td>
<td>0.949</td>
<td>0.946</td>
<td>0.944</td>
</tr>
<tr>
<td>40</td>
<td>0.941</td>
<td>0.939</td>
<td>0.937</td>
<td>0.935</td>
<td>0.934</td>
<td>0.932</td>
<td>0.931</td>
<td>0.929</td>
<td>0.927</td>
<td>0.925</td>
</tr>
<tr>
<td>50</td>
<td>0.916</td>
<td>0.913</td>
<td>0.910</td>
<td>0.907</td>
<td>0.904</td>
<td>0.902</td>
<td>0.900</td>
<td>0.897</td>
<td>0.895</td>
<td>0.893</td>
</tr>
<tr>
<td>60</td>
<td>0.883</td>
<td>0.879</td>
<td>0.875</td>
<td>0.871</td>
<td>0.867</td>
<td>0.863</td>
<td>0.860</td>
<td>0.857</td>
<td>0.854</td>
<td>0.851</td>
</tr>
<tr>
<td>70</td>
<td>0.850</td>
<td>0.845</td>
<td>0.840</td>
<td>0.835</td>
<td>0.830</td>
<td>0.825</td>
<td>0.820</td>
<td>0.817</td>
<td>0.813</td>
<td>0.809</td>
</tr>
<tr>
<td>80</td>
<td>0.788</td>
<td>0.776</td>
<td>0.763</td>
<td>0.751</td>
<td>0.739</td>
<td>0.728</td>
<td>0.718</td>
<td>0.708</td>
<td>0.698</td>
<td>0.688</td>
</tr>
<tr>
<td>90</td>
<td>0.714</td>
<td>0.701</td>
<td>0.689</td>
<td>0.678</td>
<td>0.667</td>
<td>0.658</td>
<td>0.650</td>
<td>0.643</td>
<td>0.636</td>
<td>0.630</td>
</tr>
<tr>
<td>100</td>
<td>0.638</td>
<td>0.623</td>
<td>0.608</td>
<td>0.595</td>
<td>0.583</td>
<td>0.572</td>
<td>0.562</td>
<td>0.553</td>
<td>0.545</td>
<td>0.537</td>
</tr>
<tr>
<td>110</td>
<td>0.563</td>
<td>0.555</td>
<td>0.548</td>
<td>0.541</td>
<td>0.534</td>
<td>0.528</td>
<td>0.523</td>
<td>0.517</td>
<td>0.512</td>
<td>0.507</td>
</tr>
<tr>
<td>120</td>
<td>0.494</td>
<td>0.486</td>
<td>0.475</td>
<td>0.469</td>
<td>0.463</td>
<td>0.457</td>
<td>0.451</td>
<td>0.445</td>
<td>0.440</td>
<td>0.435</td>
</tr>
<tr>
<td>130</td>
<td>0.434</td>
<td>0.425</td>
<td>0.418</td>
<td>0.412</td>
<td>0.407</td>
<td>0.402</td>
<td>0.397</td>
<td>0.392</td>
<td>0.387</td>
<td>0.382</td>
</tr>
<tr>
<td>140</td>
<td>0.383</td>
<td>0.376</td>
<td>0.369</td>
<td>0.364</td>
<td>0.359</td>
<td>0.354</td>
<td>0.350</td>
<td>0.345</td>
<td>0.341</td>
<td>0.337</td>
</tr>
<tr>
<td>150</td>
<td>0.339</td>
<td>0.333</td>
<td>0.327</td>
<td>0.323</td>
<td>0.320</td>
<td>0.316</td>
<td>0.312</td>
<td>0.309</td>
<td>0.306</td>
<td>0.303</td>
</tr>
<tr>
<td>160</td>
<td>0.292</td>
<td>0.288</td>
<td>0.291</td>
<td>0.286</td>
<td>0.282</td>
<td>0.279</td>
<td>0.276</td>
<td>0.273</td>
<td>0.270</td>
<td>0.268</td>
</tr>
<tr>
<td>170</td>
<td>0.270</td>
<td>0.267</td>
<td>0.264</td>
<td>0.261</td>
<td>0.258</td>
<td>0.255</td>
<td>0.252</td>
<td>0.250</td>
<td>0.248</td>
<td>0.246</td>
</tr>
<tr>
<td>180</td>
<td>0.243</td>
<td>0.241</td>
<td>0.238</td>
<td>0.236</td>
<td>0.233</td>
<td>0.231</td>
<td>0.229</td>
<td>0.227</td>
<td>0.225</td>
<td>0.223</td>
</tr>
<tr>
<td>190</td>
<td>0.220</td>
<td>0.218</td>
<td>0.215</td>
<td>0.213</td>
<td>0.211</td>
<td>0.209</td>
<td>0.207</td>
<td>0.205</td>
<td>0.203</td>
<td>0.201</td>
</tr>
<tr>
<td>200</td>
<td>0.199</td>
<td>0.198</td>
<td>0.196</td>
<td>0.194</td>
<td>0.192</td>
<td>0.190</td>
<td>0.189</td>
<td>0.187</td>
<td>0.185</td>
<td>0.183</td>
</tr>
<tr>
<td>210</td>
<td>0.182</td>
<td>0.180</td>
<td>0.179</td>
<td>0.177</td>
<td>0.175</td>
<td>0.174</td>
<td>0.173</td>
<td>0.172</td>
<td>0.171</td>
<td>0.170</td>
</tr>
<tr>
<td>220</td>
<td>0.166</td>
<td>0.165</td>
<td>0.164</td>
<td>0.162</td>
<td>0.161</td>
<td>0.159</td>
<td>0.158</td>
<td>0.157</td>
<td>0.155</td>
<td>0.154</td>
</tr>
<tr>
<td>230</td>
<td>0.150</td>
<td>0.152</td>
<td>0.150</td>
<td>0.149</td>
<td>0.148</td>
<td>0.147</td>
<td>0.146</td>
<td>0.144</td>
<td>0.143</td>
<td>0.142</td>
</tr>
<tr>
<td>240</td>
<td>0.141</td>
<td>0.140</td>
<td>0.139</td>
<td>0.138</td>
<td>0.138</td>
<td>0.136</td>
<td>0.135</td>
<td>0.134</td>
<td>0.133</td>
<td>0.132</td>
</tr>
</tbody>
</table>

- Stability analysis of columns
 - Stability check
 - Cross-section design
 - Allowable load/stress
Sample Problem

• A Q275 steel column is cylindrically pinned at both ends. \(\lambda_p = 96, \ \sigma_Y = 275 \text{ MPa}, \ \sigma_{cr} = 280 - 0.00872\lambda^2 \) for intermediate columns. Analyze the column stability for \(F = 60 \text{ kN} \) and \(n_{st} = 3.5 \).

- Solution: \(\lambda_p = 96, \ \lambda_Y = \sqrt{\frac{a - \sigma_Y}{b}} \approx 24 \)

- In x-y plane, both ends are pinned.

\[
i_z = \sqrt{\frac{I_z}{A}} = \frac{h}{2\sqrt{3}} = 12.99 \text{ mm}, \quad \lambda_z = \frac{\mu_z l_z}{i_z} = \frac{1 \times 800}{12.99} = 61.9
\]
- In x-z plane, both ends are fixed.

$$i_y = \sqrt{\frac{I_y}{A}} = \frac{b}{2\sqrt{3}} = 5.77\, \text{mm}, \quad \lambda_y = \frac{\mu_y l_y}{i_y} = \frac{0.5 \times 770}{5.77} = 66.7$$

$$\Rightarrow (\lambda_y = 24) < (\lambda_z = 61.9) < (\lambda_y = 66.7) < (\lambda_p = 96)$$

- The column buckling first happens in the x-z plane.

$$\sigma_{cr} = 280 - 0.00872 \lambda_y^2 = 241 \, \text{MPa}$$

$$F_{cr} = \sigma_{cr} A = \left(241 \times 10^6 \right) \left(20 \times 45 \times 10^{-6} \right) = 217 \, \text{kN}$$

$$[F] = F_{cr} / n = 62 \, \text{kN}$$

$$\Rightarrow (F = 60 \, \text{kN}) < ([F] = 62 \, \text{kN})$$

- The column is stable.
Eccentric Loading: The Secant Formula

- Eccentric loading is equivalent to a centric load and a moment.
- Bending occurs for any nonzero eccentricity. Question of buckling becomes whether the resulting deflection is excessive.
- The deflection become infinite when $P = P_{cr}$

\[
\frac{d^2w}{dx^2} = -\frac{Pw - Pe}{EI} \quad \Rightarrow \quad \frac{d^2w}{dx^2} + \frac{P}{EI}w = -\frac{Pe}{EI}
\]

\[
w = A \sin kx + B \cos kx - e, \quad k^2 = \frac{P}{EI}
\]

\[
0 = w(0) = w(L)
\]

\[
B = e; A \sin kL = e(1 - \cos kL) \quad \Rightarrow \quad A = e \tan \left(\frac{kL}{2}\right)
\]

\[
w = e \left(\tan \left(\frac{kL}{2}\right) \sin kx + \cos kx - 1\right)
\]

\[
w_{max} = w\left(\frac{L}{2}\right) = e \left(\tan \left(\frac{kL}{2}\right) \sin \left(\frac{kL}{2}\right) + \cos \left(\frac{kL}{2}\right) - 1\right)
\]

\[
= e \left(\sec \left(\frac{kL}{2}\right) - 1\right) = e \left[\sec \left(\frac{L}{2} \sqrt{\frac{P}{EI}}\right) - 1\right]
\]

\[
= e \left[\sec \left(\frac{\pi}{2} \sqrt{\frac{P}{P_{cr}}}\right) - 1\right]. \quad \left(\frac{L}{2} \sqrt{\frac{P_{cr}}{EI}} = \frac{\pi}{2}, \quad P_{cr} = \frac{\pi^2 EI}{L_e^2}\right)
\]
Eccentric Loading: The Secant Formula

- **Maximum stress**
 \[
 \sigma_{\text{max}} = \frac{P}{A} + \frac{M_{\text{max}} c}{I} = \frac{P}{A} + \frac{P\left(w_{\text{max}} + e\right)c}{I}
 \]
 \[
 = \frac{P}{A} \left[1 + \frac{ec}{i_r^2} \sec \left(\frac{\pi}{2} \sqrt{\frac{P}{P_{cr}}} \right) \right]
 \]
 \[
 = \frac{P}{A} \left[1 + \frac{ec}{i_r^2} \sec \left(\frac{L}{2} \sqrt{\frac{P}{EI}} \right) \right]
 \]
 \[
 = \frac{P}{A} \left[1 + \frac{ec}{i_r^2} \sec \left(\frac{1}{2} \frac{L}{i_r} \sqrt{\frac{P}{EA}} \right) \right]
 \]

- **Secant Formula**
 \[
 \frac{P}{A} = \sigma_{\text{max}} \left(1 + \frac{ec}{i_r^2} \right)
 \]
 \[
 \frac{P}{A} = \sigma_{\text{max}} \left(1 + \frac{ec}{i_r^2} \sec \left(\frac{1}{2} \frac{L}{i_r} \sqrt{\frac{P}{EA}} \right) \right)
 \]

- For small slenderness ratio: \(\frac{P}{A} \approx \sigma_{\text{max}} \left(1 + \frac{ec}{i_r^2} \right) \).

- For large slenderness ratio, the curves get very close to Euler’s curve, and thus that the effect of the eccentricity of the loading becomes negligible.

- The secant formula is chiefly useful for intermediate values of slenderness ratio.
Contents

• Stability and Buckling (稳定性与失稳)
• Examples of Columns (压杆应用示例)
• Conventional Design of Columns (压杆的常规设计方法)
• Euler’s Formula for Pin-ended Columns (端部铰接压杆欧拉公式)
• Buckling Modes (失稳模态)
• Extension of Euler’s Formula (欧拉公式的扩展)
• Buckling in Orthogonal Planes (相互垂直平面内的失稳)
• Ways to Improve Column Stability (提高压杆稳定性的途径)
• Applicability of Euler’s Formula (欧拉公式的适用范围)
• Failure Diagram of Columns (压杆的失效总图)
• Critical Stress of Columns (压杆临界应力的确定)
• Design of Columns (压杆的稳定性设计方法)
• Eccentrically Loaded Columns (偏心压杆)